The secret to scientific success….

PublishingThis post tackles one of the big issues in science – how to be successful. It turns out that the basic principle is simple, publish. But, there’s some detail that needs to be considered. Most of all, it seems that the earlier you start publishing the better for your career (yes Ph.D. candidates, that means you!). To explain the detail much better than I ever could, I have reproduced a post from a colleague of mine, Prof. Corey Bradshaw (see his blog, Conservation Bytes). He can be controversial, but it gets the point across and it’s fun. His post and blog are definitely worth a read if you want to be successful in science…….

Early to press is best for success

by CJA Bradshaw

This paper is bound to piss off a few people. So be it. This is what we found, regardless of what you want to believe.

Led by the extremely prolific Bill Laurance, we have just published a paper (online early) that looks at the correlates of publication success for biologists.

I have to preface the main message with a little philosophical discussion of that loaded word – ‘success’. What do we mean by scientific ‘success’? There are several bucket loads of studies that have attempted to get at this question, and several more that have lamented the current system that emphasises publication, publication, publication. Some have even argued that the obsession of ever-more-frequent publication has harmed scientific advancement because of our preoccupation with superficial metrics at the expense of in-depth scientific enquiry.

Well, one can argue these points of view, and empirically support the position that publication frequency is a poor metric. I tend to agree. At the same time, I am not aware of a single scientist known for her or his important scientific contributions that doesn’t have a prolific publication output. No, publishing shitloads of papers won’t win you the Nobel Prize, but if you don’t publish, you won’t win either.

So, publication frequency is certainly correlated with success, even if it’s not the perfect indicator. But my post today isn’t really about that issue. If you accept that writing papers is part of a scientist’s job, then read on. If you don’t, well …

So today I report the result of our study published online in BioScience, Predicting publication success for biologists. We asked the question: what makes someone publish more than someone else?

There are a few possibilities here, with some well-known mechanisms, and others that are only suspected. Using the CVs of 1400 biologists in various disciplines (excluding medical) from four different continents, we measured the number of publications they had written by the time they had completed their PhD and ten years later. We also collected information on the scientists’ gender, whether English was their first language, and the international ranking of the university where they obtained their PhD.

Combining the data into a series of linear models, we asked the following questions:

  1. Given that our sample included people that stayed in science for at least ten years (i.e., we didn’t include people that gave up their scientific careers in the interim), do males publish more than females?
  2. If you went to a highly ranked university for your PhD (e.g., Cambridge, Oxford, Harvard, etc.), were you  likely to publish more than someone who had received theirs from a lower-ranked institution?
  3. Most scientific results are published in English these days, so if English is your first language, do you have an advantage and therefore publish more than someone for whom English is a second (or third, fourth, etc.) language?
  4. If you start publishing early in your career, does that set the pace for the rest of it?

The results? Drumroll, please.

Most will be happy to read that the most important determinant of your ‘long’-term (10-year) publication success is how many papers you’ve written by the time you’ve completed your PhD. This effect increases markedly if we take the number of papers you’ve published three years after PhD completion as a predictor. To make the point again that publication output is a reasonable metric of ‘success’, we also found that it was highly correlated with the ten-year h-index of the scientists for which we had data.

But there were other effects, albeit of lesser importance. Yes, even after removing the well-known ‘attrition’ effect of female scientists (i.e., leaving their careers earlier than males), men tended to publish a little more than women. There are many potential reasons for this, including still largely male-dominated academic and publishing systems, misogyny and the extra constraints of child rearing. We still have a long way to go here.

English as a first language also gave scientists a publication advantage as hypothesised, although the effect was weak.

Possibly one of the most interesting results was that PhD-university ranking had absolutely no discernible effect on publication output, regardless of which ranking metric one uses.

There a few take-home messages in all of this. First, if you are a PhD student and/or early-career researcher, make sure you put the effort into getting those first papers out. Second, if you’re considering people to hire for a new position and you’re taking a gamble on their potential to publish, you should perhaps place a strong importance on their publication output to date (all other considerations being equal).

However, employers should NOT choose men over women, nor should they blindly hire people with English as a first language. Case in point is that most of my lab’s best and brightest are early-career women from non-English-speaking countries. The gender and language effects were weak at best, and nearly disappeared once we considered the data three-years after PhD completion.

Finally, if an employer is considering choosing one of two recently completed PhD students for a postdoctoral position, and the one from the higher-ranking university has fewer publications than the other from the lower-ranked institution, my advice would be to choose the latter (all other things considered being equal, of course). Maybe students (and their parents) should also put less emphasis on university ranking and more on the people with whom they will be working when considering where to do their postgraduate studies.

CJA Bradshaw

Advertisements

Mediation of global change by local biotic and abiotic interactions

Dr Laura FalkenbergThis post is basically a short synopsis of the work done by one of my (now ex-) Ph.D. students, Dr Laura Falkenberg. Laura’s work has turned much of what we thought we knew about the effect of increased CO2 and nutrients on its head; we found synergies where we didn’t expect them (reviewed in a book chapter) and system resilience and resistance to change beyond what we hoped (via strong competitive interaction and trophic links; published in Oecologia, PLoS One and Marine Ecology Progress Series). Laura has certainly helped us look at things in new ways and given us hope that in marine systems where synergies between stressors exist that management of local conditions could potentially buy us some time in mitigating climate change (e.g. reducing nutrient flows into the marine environment, in Journal of Applied Ecology).

Ph.D. thesis: Mediation of global change by local biotic and abiotic interactions
by Dr Laura Falkenberg.

Throughout my Ph.D., I assessed the conceptual model that while cross-scale abiotic stressors can combine to synergistically favour shifts in marine habitats from kelp forests to mats of turfing algae, management of local conditions can counter this change. My experimental manipulations found broad support for the hypotheses that; 1) cross-scale factors (i.e. local and global) can have interactive effects which increase the probability of expansion of turfs but not kelp and, 2) management of local conditions (e.g. maintaining intact forests, limiting nutrient enrichment) can dampen the effects of global change (e.g. forecasted carbon dioxide). I published the results from my thesis in four papers. In the first, I showed that experimental enrichment of CO2 and nutrients influence the biomass accumulation of turf and kelp differently, with turf responding positively to enrichment of both resources while kelp responded to enrichment of nutrients but not CO2. Given that such direct responses could be mediated by interactions with other taxa, in the second paper I considered a key competitive interaction and revealed that the presence of kelp can inhibit the synergistic positive effect of resource enrichment (i.e. CO2 and nutrients) on their turf competitors. Similarly, in the third paper I highlighted the importance of herbivory by showing that under enriched CO2 conditions rates of this process were increased to counter the expansion of turfs. Finally, in the fourth paper, I considered a scenario in which these biotic controls were absent and identified that where multiple resources had been enriched and prompted a synergistic response (i.e. the expansion of turf where CO2 and nutrients are modified), subsequent reduction of the locally-determined factor alone (i.e. nutrients) substantially slowed further expansion of turf algae, but that the legacy of nutrient enrichment was not entirely eradicated. Together, these results represent progress in ecological tests of hypotheses regarding global climate change as they incorporate comprehensive sets of abiotic and biotic community drivers.

You can access all of Laura’s publications from the University of Adelaide’s digital library, or email her for a copy.