Can nature compensate for human impacts?

Algal turfs dominating under acidified conditions at cold-water (temperate) CO2 seeps, which we use at "natural experiments". You can just see the fronds of a solitary kelp plant in the right of the photo, otherwise they are rare at the site (when they should be 8 - 10 plants per metre!).

Algal turfs dominating under acidified conditions at cold-water (temperate) CO2 vents, which we use at “natural experiments” to try and understand the effects of carbon emissions on our oceans. You can just see the fronds of a solitary kelp plant in the right of the photo, otherwise they are rare at the site (when they should be 8 – 10 plants per metre!). This is a system that has been pushed past its ability to resist or compensate for human activities.

One thing that humans are really good at is having an impact on the environment through their activities. The problem is that we generally don’t realise that we’re having an impact until something changes in a drastic way. We talk about things called phase-shifts, where the environment changes from one “phase” to another. Good (and unfortunately common) examples are the loss of kelp forests for bare reef, seagrass meadows for bare sand, or coral reefs for algal habitats. In all of these cases, the environment has been degraded to the point where it no longer functions as it should, meaning that biodiversity and productivity are massively reduced.

There are two questions to ask here, (1) why don’t we see these phase-shifts coming, and (2) does nature have any resistance to them? A new paper by one of my PhD students, Giulia Ghedini, shows that nature may actually try to resist human-caused stressors (such as increased nutrient pollution, ocean acidification, warming) by increasing the strength of compensation. In this case, Giulia found that the compounding effects of multiple disturbances increasingly promoted the expansion of weedy algal turfs (which replace kelp forests), but that this response was countered by a proportional increase in grazing of those same turfs by gastropods. This is a natural compensatory mechanism, but it has limits.

What does this mean for our understanding of phase-shifts? First, it means that nature is stronger at resisting than we realised. BUT, because it is extremely difficult to either see or quantify this resistance we generally don’t realise it is happening…. until it stops. Then, once we push the systems past their ability to compensate for the increased pressure we place on them we see a sudden shift. It’s like watching a duck on a river – it may look extremely calm on the surface, seemingly stationary, but underneath it is paddling extremely hard. At some point the current strengthens too much and it can’t paddle harder and so, seemingly suddenly, the duck begins to float down the river.

Unfortunately, when put together, this means that more systems may be more stressed than we realise, and the only way to stop detrimental phase-shifts is to take the conservative approach and start to reduce our impacts on these systems. For example, we know that nutrient pollution, carbon emissions, overfishing and many other activities have damaged marine ecosystems, why not begin to reduce our impacts before we add more systems to the list of those we didn’t realise were at breaking point?