When global warming and shifting-baselines syndrome collide

We are having a strange summer in South Australia. First it was mild, then it was late, now it’s hot. So, the weather is a hot topic (pardon the pun) in every conversation. Invariably, conversation then leads onto climate and global warming. And that’s where things get interesting because, as I’ve discussed before, humans and all other organisms experience weather, not climate. In one such conversation with a friend I brought up an excellent article published recently in The Conversation. The article outlines a scary truth; by the end of February 2015 the global temperature has been above the long-term average for 30 years (see the second figure from NOAA, below). My friend said to me, in a very tongue-in-cheek way, “well, I’m 30-ish, which means that they ARE average temperatures to me!”

And that is part of the problem with climate change. It is now easy to demonstrate that temperatures are warming. In Australia, we’re starting to get used to hot summers and bush fires. Even amongst normal inter-annual variation, it’s certainly not difficult to see where the temperature trend is going from the temperature records:

This pattern is repeated globally:

But why can’t we seem to accept the data to all agree that the earth is warming and that we’re the cause?

The problem is three-fold. First, there is the shifting-baselines syndrome. Basically, the idea behind this syndrome is that what you experience in your lifetime is “normal” to you. As with my friend, if you’re only 30 years old (or younger!) then these current temperatures are “normal”. But that doesn’t mean that they ARE normal; the data clearly show that we’re warming outside pre-industrial climatic patterns.

Second, and related to the first, is that we only experience weather. If it rains, we get wet. If it’s winter, we put on a jacket. If it’s summer, we go swimming. We don’t experience “averages.” Some colleagues and I recently published a paper explaining the different effects of climate and weather, noting that without understanding these differences we will not be able to predict what will happen to our marine ecosystems. Yet, policy-makers generally conflate climate with weather, and so we continue to hold to bad policy.

The third, and possibly worst reason, is that in an attempt to “sell the story” the global media still pretends to provide a balanced report. What this means for them is that one person who speaks out against the science underpinning our understanding of climate change gets equal voice to the thousands of scientists who recognise the rigor of this science. That is not only unbalanced, but simply confuses the public into thinking that there is some debate. There is not. To paraphrase the start of the Conversation article, let’s call it, the climate has changed and we’re the cause.

Advertisements

Can nature compensate for human impacts?

Algal turfs dominating under acidified conditions at cold-water (temperate) CO2 seeps, which we use at "natural experiments". You can just see the fronds of a solitary kelp plant in the right of the photo, otherwise they are rare at the site (when they should be 8 - 10 plants per metre!).

Algal turfs dominating under acidified conditions at cold-water (temperate) CO2 vents, which we use at “natural experiments” to try and understand the effects of carbon emissions on our oceans. You can just see the fronds of a solitary kelp plant in the right of the photo, otherwise they are rare at the site (when they should be 8 – 10 plants per metre!). This is a system that has been pushed past its ability to resist or compensate for human activities.

One thing that humans are really good at is having an impact on the environment through their activities. The problem is that we generally don’t realise that we’re having an impact until something changes in a drastic way. We talk about things called phase-shifts, where the environment changes from one “phase” to another. Good (and unfortunately common) examples are the loss of kelp forests for bare reef, seagrass meadows for bare sand, or coral reefs for algal habitats. In all of these cases, the environment has been degraded to the point where it no longer functions as it should, meaning that biodiversity and productivity are massively reduced.

There are two questions to ask here, (1) why don’t we see these phase-shifts coming, and (2) does nature have any resistance to them? A new paper by one of my PhD students, Giulia Ghedini, shows that nature may actually try to resist human-caused stressors (such as increased nutrient pollution, ocean acidification, warming) by increasing the strength of compensation. In this case, Giulia found that the compounding effects of multiple disturbances increasingly promoted the expansion of weedy algal turfs (which replace kelp forests), but that this response was countered by a proportional increase in grazing of those same turfs by gastropods. This is a natural compensatory mechanism, but it has limits.

What does this mean for our understanding of phase-shifts? First, it means that nature is stronger at resisting than we realised. BUT, because it is extremely difficult to either see or quantify this resistance we generally don’t realise it is happening…. until it stops. Then, once we push the systems past their ability to compensate for the increased pressure we place on them we see a sudden shift. It’s like watching a duck on a river – it may look extremely calm on the surface, seemingly stationary, but underneath it is paddling extremely hard. At some point the current strengthens too much and it can’t paddle harder and so, seemingly suddenly, the duck begins to float down the river.

Unfortunately, when put together, this means that more systems may be more stressed than we realise, and the only way to stop detrimental phase-shifts is to take the conservative approach and start to reduce our impacts on these systems. For example, we know that nutrient pollution, carbon emissions, overfishing and many other activities have damaged marine ecosystems, why not begin to reduce our impacts before we add more systems to the list of those we didn’t realise were at breaking point?

Overfishing: a problem for everyone

I am currently writing a series of articles for a Chinese produced magazine which targets wildlife conservation. As you may guess, they started with Panda conservation, so the magazine is called Giant Panda, but they are running a series on over exploitation of natural resources. Which is where I come in, contributing a series on fisheries. Over the next few months I will post abridged versions of these articles here. The first, as the title suggests, is about overfishing.

 

It shouldn’t be a surprise to most people that many of the world’s fisheries are overexploited. Most of the world’s population eats seafood. In fact, the amount of seafood that each person eats, on average, has risen to 19.2 kg per person per year, with over 1 billion people relying on seafood for their primary source of protein. This means that seafood is an extremely important part of our lives. The problem is that over 90% of the world’s fisheries are either fully exploited or overfished (FAO 2014 report on the global fisheries), meaning that if we take any more from those fish stocks they will collapse, perhaps forever.

 

Over fishing and fisheries collapse

Overfishing has a long history. One of the best documented cases of a fish stock collapse is that of the Atlantic Cod. When the fishery was discovered in the late 1400’s the cod were so plentiful that it was assumed that the stock was unending. There are stories of people dipping a basket into the ocean and pulling it out full of cod! Catches of cod steadily increased from the early 1500’s, supplying a major proportion of the world’s protein, but were relatively small until industrialisation meant that catches increased dramatically. In the late 1960’s the annual catch peaked at over 1.5 million tonnes, an unsustainable catch. Years of overfishing caused the stock to collapse, and despite ever-improving fishing technology and manpower, the catches continued to decline until the fishery was forced closed in 1992. By that time, the total biomass of cod remaining in the Atlantic was estimated to be less than 1% of the original stock, and still has not and may never recover.  (for a great read on this topic pick up the book “Cod: A biography of the fish that changed the world” by Mark Kurlansky).

The most important lesson to learn from the Atlantic Cod fishery is that any fishery which is overfished can and will collapse. In the last decade alone, many important fisheries have been listed as overfished, including the Largehead hairtail (Trichiurus lepturus), of which over 1 million tons is caught in Asian waters annually, the Mediterranean hake (Merluccius merluccius) and red mullet (Mullus barbatus), Cunene Horse Mackerel (Trachurus trecae), White Grouper (Epinephelus aenus), a number of shrimp species, the list is extensive, and most countries in the world feature at least one fishery. As mentioned above, over 90% of the world’s fisheries are already heading in the direction of being overfished and without good management they too will collapse. Unfortunately, the true frequency with which fisheries collapse can be masked by catch statistics. Global annual fisheries production has been relatively stable since the 1990’s. On the surface, it would appear that fisheries are well-managed and sustainable. What happens in reality, however, is that as we overfish one stock and it becomes unviable, either economically or biologically, so it is replaced by another, new fishery. So, the overall global catch stays the same but we have simply shifted the damage. Usually this means that we are doing something known as “fishing down food webs”, whereby we overfish one stock and then move on to fish a different species further down the food web, often the food of the species that is now over fished! This leads to a situation where the productivity of the oceans as a whole has reduced because the catch is now coming from a previously unfished source. Over time, this continual overfishing causes not only a decline in fish abundance but also massive damage to the ocean ecosystems (which will be topics of future articles in this series).

Fishing down foodwebs

Ecosystem Impacts

Overfishing doesn’t only impact the particular fish species that is over exploited; it is not simply a matter of thinking “it is only one fish species, we will do better next time”. Removing a species from an ecosystem is like removing one cog from a finely tuned machine – it stops working properly. This is especially the case because many of the species that we prize play critical roles in regulating the function of ecosystems. When these species are removed from the ecosystem it begins to become unwell, not providing all of the ecosystem services that we take for granted. Then, as we fish down the food web and remove more species, the ecosystem degrades further.  A very good example of this is shark fishing. Sharks are usually the top predators in ecosystems and control how it functions. To be healthy and function properly, marine ecosystems need these top predators. However, nearly all shark fisheries in the world are over fished, with some species of shark becoming extremely rare. As most species of shark are long-lived they tend to be particularly susceptible to over fishing, and the only way that their populations will recover is by not fishing them.

Indeed, some of the most dramatic changes we see in ecosystems are because of over fishing. A good example from colder oceans would be the overfishing of large predatory fish such as snapper, which are prized by humans to eat, allowing species like sea urchins to become overly abundant because normally the predatory fish would keep their numbers in balance. While sea urchins are a natural part of the ecosystem, in large numbers they completely consume kelp forests, which are the base of the food chain and removing them causes the loss of hundreds of species. Unfortunately, these are not isolated examples, and every country in the world has examples of ecosystems which are degraded by overfishing.

 

Why aren’t fisheries sustainable?

The answer to this question is that they actually are sustainable, as long as we do not take too much. In fact, the goal of fisheries managers is to maintain catches at the Maximum Sustainable Yield (MSY), or the catch that you can take from a particular fishery forever. In its simplest form, the MSY is an easy concept – you just need to harvest slightly less than the total number of fish which recruit to the fishery each year. It is, however, exceptionally hard to calculate the MSY for a fishery for a number of reasons, in particular that (1) we cannot know how many fish there actually are because we cannot actually count them all, (2) the number of fish which recruit into a fishery, the number we need to know so that we can set catch limits, is dependent not only on how many fish are in the stock, but also a myriad of environmental factors, and (3) we don’t really know how many fish are being taken from a stock because of unmonitored recreational and illegal fishing. This third pressure can be very problematic as people often take fish that are too small, and taking fish before they are able to reproduce (that is, they are immature) means that they cannot contribute young to the next generation before they are caught. In addition to these factors, governments, businesses and the public in many countries often place immense pressure on fisheries managers and fishermen to take more fish to keep supply high. Ultimately, this proves to be counterproductive as when a fishery becomes fully exploited, catches begin to decline and prices rise. Increasing fishing effort at this point leads to overfishing and extremely high prices, making that particular species unavailable to everyone, from the consumer who can’t afford to buy it to the fisherman who can no longer make a living and also the forgotten victim – the ecosystem itself.

 

What’s the solution?

Contrary to what we used to believe, the oceans are not an endless supply of resources; the ocean has a limited productivity budget. But, this doesn’t mean that we cannot sustainably harvest seafood from the oceans, we just need to ensure we don’t take too much.

What does this mean for the future? At a time when the consumption of seafood is increasing, 90% of the world’s fisheries cannot produce any more, meaning that we need to look to other ways to produce our seafood and reduce consumption. The logical way to do this is through environmentally sustainable aquaculture, or farming of seafood. Aquaculture is already common around the world, making up over 40% of total seafood production, but there is still a lot of room for sustainable expansion.

How can you help? The best way to help is to be a discerning consumer. Rather than not eating seafood, ask where it comes from. Is it from a wild fishery? If so, is it sustainably managed? Is the fish you’re eating grown in aquaculture in a sustainable manner? While it may be hard to get the answers to these questions, if you ask at restaurants or where you buy your seafood you will then force the suppliers to ask the same questions. This will then force industries to become more responsible and manage fisheries in a sustainable manner. In some countries, this public pressure has shown to be an effective way to change fishing practices.

 

Next time

In the next article I will discuss two different types of fishing, trawling and long-line fishing, and the damage that they cause to marine ecosystems.

Relevant experimental scales for Ocean Acidification

Degraded reef where kelp have been replaced by algal turfs

Degraded reef where kelp have been replaced by algal turfs

In a few of my posts have discussed the potential effects of ocean acidification (OA), caused by the dissolution of CO2 into seawater, on marine ecosystems. What I haven’t really discussed yet is how we make these predictions, because quite frankly attempting to predict the effects of OA is a difficult prospect. There are a couple of different ways that you can make such predictions, but for me one of the most obvious and effective ways is to identify the key species’ in a particular marine ecosystem and then experimentally expose them to elevated CO2 based on the various emissions scenarios. On the surface that sounds simple…… but it turns out to be quite hard. The most simple way to do it is to bring organisms back into the lab and do the experiments there. True, it’s easier to manipulate the CO2 by bubbling mixed air with elevated concentrations of CO2 under lab conditions, but invariably you end up with a situation where you’re looking at the physiological responses of organisms. This is a very valid thing to do, but you can also be in for some surprises when you try to scale up to identify ecological effects. For example, based on

laboratory based experiments we have predicted that algal turfs will replace kelp forests and corals under

Healthy forest of the kelp Ecklonia radiata

Healthy forest of the kelp Ecklonia radiata

future OA conditions (picture to the right; link to the kelp study) because these algal turfs use the extra CO2 as a resource and grow faster. This conclusion, based on physiological changes, was and still is quite valid. HOWEVER, when we scaled up our experiments to mesocosms (literally “medium” experimental environment or ecosystem) and included the kelp we discovered that the kelp were able to resist a lot of this effect by suppressing the growth of the turfs. But, realising that this mesocosm study was also limited because it only occurred over one generation of kelp, and you may need to study multiple generations because the adults may not be the “weak point”, we took this work up to the next scale, field experiments at naturally occurring CO2 vents – currently our best “ecosystem” approach to understanding OA.

But we were interested in not only the larger, system response, but also how well our other experiments may predict ecosystem outcomes. We tested this thought by combining laboratory and field CO2 experiments (which is difficult but possible) and data from ‘natural’ volcanic CO2 vents. Interestingly, and to our great

Coral reefs are structurally complex and "cemented" together by Crustose Coralline Algae.

Coral reefs are structurally complex and “cemented” together by Crustose Coralline Algae.

relief, we found that algal mats showed the same direction of response to elevated CO2 (i.e. they grew more) across all scales of experiments but that the strength of response was modified by the ecosystem complexity. Basically, the things that either eat or suppress the growth of algal turfs slow the rate at which they will come to dominate the systems. BUT, we did find that these turfs have enhanced productivity and more expansive covers in situ under projected near-future CO2 conditions both in temperate and tropical conditions.; that is, our original predictions from the laboratory experiments that these weedy turfs could come to replace kelps and corals seems to hold up, it’s just that the rate of change will be a bit slower.

 

Digital library links for:
Lab based kelp study (Russell et al. 2009)
Kelp resisting turfs (Falkenberg et al. 2012)
Need to study multiple life stages (Russell et al. 2012)
Field manipulations of CO2 (Kline et al. 2012)
Ecological outcomes across different experimental scales (Connell et al. 2013)

Don’t forget to remember the past

I have recently returned from the 10th International Temperate Reefs Symposium in Perth. It was great to spend a week talking good science

Amblypneustes pallidus in a Posodonia seagrass meadow. Photo: Owen Burnell

Seagrass may increase their productivity in the future as they use CO2 for photosynthesis.
Photo: Owen Burnell

with a vibrant group of great scientists. There was an array of talks from classical marine ecology (which is great to see!) to novel modelling approaches and plenty of discussion of human impacts in marine systems. In the rare moments of quiet since my return I’ve been thinking about the main message that I took away from the meeting, and it’s this: anthropogenic climate change may be new to the planet, but we were studying the effects of human activities on ecosystems for several decades before we even realised that climate change was happening. So why is it that we seem to have abandoned ecology in our race to understand climate change?

While I was writing my talk for the conference I realised that, in general, research into the effects of climate change in marine ecosystems has been hampered by not looking at the literature on other human impacts. For example, there is a rich and abundant literature on how excess nutrient loads degrade ecosystems and change their structure and function. Yet, it is only recently that we have realised that CO2 is a “nutrient” or resource in marine systems. This seems logical; after all, plants use inorganic carbon for photosynthesis.  However, the story isn’t that simple, with different algae and seagrasses using different forms of carbon for photosynthesis. Even more confusing is that it looks like the “weedy” species will benefit by switching to the most abundant source of carbon and start to dominate ecosystems (see some of my papers and Harley et al. for the ecosystem effects and Raven & Hurd for the physiological aspects)! But I digress….

The point is that for some reason we don’t seem to draw on this older literature for the general principles of what we may expect to see as CO2 concentrations increase in the oceans. We’re starting to catch up, but the lost time is frustrating – let’s not make the mistakes of past generations but rather learn by them.

Digital library links for: Connell & Russell 2010

Ocean acidification: will there be ecosystem effects?

Turfs overgrowing coral

Algal turfs overgrowing corals under acidified conditions at CO2 seeps, which we use at “natural experiments”. Note that the seagrass in the middle of the photo also grow well under these conditions.

It has been a while since my last post, for which I apologise, but I have just emerged from a particularly busy period. I was lucky enough to be invited to an ocean acidification round table at the Peter Wall Institute in Vancouver late last year and we have been madly working on multiple papers since then (and I also had a short break over the Christmas week because of sheer exhaustion!). Why are we working so madly to get the papers written? Because the topic of the meeting is both topical and imminently important: how do we predict the ecosystem-level impacts of ocean acidification, and what can we do about it?

Why is this such an important question? The simple answer is that ocean acidification is a direct consequence of increasing CO2 in the atmosphere. It’s simple, indisputable chemistry. As CO2 dissolves into seawater it forms carbonic acid, finally reducing the amount of carbonate in the water (a good diagram of this reaction can be found here). The early research into this field (only 10 years ago now!) focussed entirely on calcifying species, such as gastropods and corals, because they use this carbonate to form their hard structures (calcium carbonate). What we’ve realised more recently, and a big part of my research program, is tha t the extra Carbon in the system (in the form of CO2) is also a resource for some algae and plants, potentially causing a change in the dominant species in ecosystems (see my photo of a “future” coral reef and kelp forest in this post).

Algal turfs dominating under acidified conditions at cold-water (temperate) CO2 seeps, which we use at "natural experiments". You can just see the fronds of a solitary kelp plant in the right of the photo, otherwise they are rare at the site (when they should be 8 - 10 plants per metre!).

Algal turfs dominating under acidified conditions at cold-water (temperate) CO2 seeps, which we use at “natural experiments”. You can just see the fronds of a solitary kelp plant in the right of the photo, otherwise they are rare at the site (when they should be 8 – 10 plants per metre!).

I’m happy to say that we made real progress in trying to understand what the likely ecosystem effects are globally, and more importantly the things that we need to know into the future. I won’t pre-empt our publications, but the synopsis is that ecosystems will change, and for the worse. This has been highlighted before, including for Australia, but for the first time I think we’re starting to get at understanding the ecological mechanisms (which is essential if we are to help the systems resist this change!).

Lead by Prof. Chris Harley, and including an amazing group of contributors, I’d say it was the most successful round-table that I’ve been involved with and we’ll have some good papers coming out soon (I’ll be sure to post about them!). If you’re interested in the topic and want more information, I strongly suggest that you watch this video of the public event we held as part of the week’s activities.

 

Digitial library links for:Falkenberg et al. 2013
Russell et al. 2013

The secret to scientific success….

PublishingThis post tackles one of the big issues in science – how to be successful. It turns out that the basic principle is simple, publish. But, there’s some detail that needs to be considered. Most of all, it seems that the earlier you start publishing the better for your career (yes Ph.D. candidates, that means you!). To explain the detail much better than I ever could, I have reproduced a post from a colleague of mine, Prof. Corey Bradshaw (see his blog, Conservation Bytes). He can be controversial, but it gets the point across and it’s fun. His post and blog are definitely worth a read if you want to be successful in science…….

Early to press is best for success

by CJA Bradshaw

This paper is bound to piss off a few people. So be it. This is what we found, regardless of what you want to believe.

Led by the extremely prolific Bill Laurance, we have just published a paper (online early) that looks at the correlates of publication success for biologists.

I have to preface the main message with a little philosophical discussion of that loaded word – ‘success’. What do we mean by scientific ‘success’? There are several bucket loads of studies that have attempted to get at this question, and several more that have lamented the current system that emphasises publication, publication, publication. Some have even argued that the obsession of ever-more-frequent publication has harmed scientific advancement because of our preoccupation with superficial metrics at the expense of in-depth scientific enquiry.

Well, one can argue these points of view, and empirically support the position that publication frequency is a poor metric. I tend to agree. At the same time, I am not aware of a single scientist known for her or his important scientific contributions that doesn’t have a prolific publication output. No, publishing shitloads of papers won’t win you the Nobel Prize, but if you don’t publish, you won’t win either.

So, publication frequency is certainly correlated with success, even if it’s not the perfect indicator. But my post today isn’t really about that issue. If you accept that writing papers is part of a scientist’s job, then read on. If you don’t, well …

So today I report the result of our study published online in BioScience, Predicting publication success for biologists. We asked the question: what makes someone publish more than someone else?

There are a few possibilities here, with some well-known mechanisms, and others that are only suspected. Using the CVs of 1400 biologists in various disciplines (excluding medical) from four different continents, we measured the number of publications they had written by the time they had completed their PhD and ten years later. We also collected information on the scientists’ gender, whether English was their first language, and the international ranking of the university where they obtained their PhD.

Combining the data into a series of linear models, we asked the following questions:

  1. Given that our sample included people that stayed in science for at least ten years (i.e., we didn’t include people that gave up their scientific careers in the interim), do males publish more than females?
  2. If you went to a highly ranked university for your PhD (e.g., Cambridge, Oxford, Harvard, etc.), were you  likely to publish more than someone who had received theirs from a lower-ranked institution?
  3. Most scientific results are published in English these days, so if English is your first language, do you have an advantage and therefore publish more than someone for whom English is a second (or third, fourth, etc.) language?
  4. If you start publishing early in your career, does that set the pace for the rest of it?

The results? Drumroll, please.

Most will be happy to read that the most important determinant of your ‘long’-term (10-year) publication success is how many papers you’ve written by the time you’ve completed your PhD. This effect increases markedly if we take the number of papers you’ve published three years after PhD completion as a predictor. To make the point again that publication output is a reasonable metric of ‘success’, we also found that it was highly correlated with the ten-year h-index of the scientists for which we had data.

But there were other effects, albeit of lesser importance. Yes, even after removing the well-known ‘attrition’ effect of female scientists (i.e., leaving their careers earlier than males), men tended to publish a little more than women. There are many potential reasons for this, including still largely male-dominated academic and publishing systems, misogyny and the extra constraints of child rearing. We still have a long way to go here.

English as a first language also gave scientists a publication advantage as hypothesised, although the effect was weak.

Possibly one of the most interesting results was that PhD-university ranking had absolutely no discernible effect on publication output, regardless of which ranking metric one uses.

There a few take-home messages in all of this. First, if you are a PhD student and/or early-career researcher, make sure you put the effort into getting those first papers out. Second, if you’re considering people to hire for a new position and you’re taking a gamble on their potential to publish, you should perhaps place a strong importance on their publication output to date (all other considerations being equal).

However, employers should NOT choose men over women, nor should they blindly hire people with English as a first language. Case in point is that most of my lab’s best and brightest are early-career women from non-English-speaking countries. The gender and language effects were weak at best, and nearly disappeared once we considered the data three-years after PhD completion.

Finally, if an employer is considering choosing one of two recently completed PhD students for a postdoctoral position, and the one from the higher-ranking university has fewer publications than the other from the lower-ranked institution, my advice would be to choose the latter (all other things considered being equal, of course). Maybe students (and their parents) should also put less emphasis on university ranking and more on the people with whom they will be working when considering where to do their postgraduate studies.

CJA Bradshaw