Climate change and the collapse of fisheries

This is the thiFishing down foodwebsrd article in the series that I’m writing for a Chinese magazine targeting wildlife conservation. As you may guess, they started with Panda conservation, so the magazine is called Giant Panda, but they are running a series on exploitation of natural resources. So far I have covered overfishing, trawling and longline fishing. In this current article we discuss the interaction between fishing and climate change. I say we, because this article was led by Charlee Corra, a postgraduate student of mine. Charlee really deserves the credit for this one!

The first article in this series discussed the effects of overfishing and how it causes degradation to the environment. However, changes to the environment also affect fisheries and their sustainability. In any ecosystem, the survival of a species is dependent on its ability to grow to maturity and reproduce, which is in turn dependent on many factors such as environmental conditions that support healthy physiological functioning. Temperature, salinity, and water quality are all examples of integral abiotic factors that can have the power to support life or pose a serious threat. Global climate change is rapidly altering these environmental conditions, and thus altering marine communities in a way that scientists, fishermen, fisheries managers, and policy makers must understand in order to predict future stocks and improve sustainable practices

How the environment affects plants and animals
Physiology:  Marine organisms differ widely in their tolerance of environmental conditions. Some animals can survive better under stress than others. These differences in biological responses determine where an organism can live. For example, in the intertidal zone temperature sets the upper limits of species distributions such that barnacles, mussels or oysters with a greater heat tolerance live higher on the shore than those with a lower tolerance. While almost every organism has the ability to withstand heat stress to varying degrees, most organisms are also adapted to the temperatures in their particular habitat. Thus, many species, and even populations, have different thermal limits beyond which survival is brought into question. As an extreme example, imagine that you grew up in the polar regions and summer for you only gets as hot as, say, 10°C and you were put in the desert in summer – you would be above your thermal tolerance and likely would die.

The water chemistry of our oceans also heavily affects physiological functions. Calcifying organisms, such as corals, oysters, mussels, and some crustaceans, rely on specific levels of CO2 (usually low) and several other chemical compounds (usually high) in order to induce the chemical reaction that allows them to make their skeletons and shells. Changes to the water’s chemistry can compromise the structural integrity of these essential parts. Of particular concern is that constant and increasing CO2 emissions are causing more CO2 to dissolve into the ocean, causing Ocean Acidification (OA). OA is already making it difficult for shelled organisms to make their shells in some parts of the ocean! You can do a small experiment to demonstrate this effect: put a small seashell or piece of egg shell into a glass of an acidic liquid like Cola or vinegar and watch it slowly dissolve (this can take a day or two).

Climate change and long-term climate shifts: Climate fluctuates and changes naturally across many different time scales from seasonal to multi-decadal and millennial. However, in the last two centuries industrial activity has begun to influence these cycles, mostly because of emissions of greenhouse gases such as CO2 into the atmosphere. Of particular concern is that in addition to causing OA this CO2 also causes the earth’s atmosphere to warm, in turn warming the ocean. Unless something is done to change this trajectory, CO2 levels will continue to rise, negative effects on the environment will become stronger, and the impacts on marine habitats and communities will become more visible.

Shifts in distribution of plants and animals: As environmental conditions change, and especially as oceans warm up, many species are predicted to move poleward to higher latitudes to live in more optimal conditions. These range shifts are not always consistent or predictable among organisms or across regions due to complex ecological interactions with other physical and biological factors such as currents and larval dispersal, competitors and predators. Importantly, as the distributions of different species change, the balance of ecosystems is upset and their function is degraded.

Just as with other species, climate change will invariably impact fish populations and dynamics. For example, fish populations may either get smaller where they currently are or move to a new area. Adjusting fishing practices and quotas to these changes is essential for the future of sustainable fisheries.

Trawler

Photo courtesy of the NOAA photo library (www.photolib.noaa.gov) Photographer: Robert K. Brigham

Effects of climate change on fisheries
Range shifts represent a huge threat to the productivity and success of fisheries, especially when they occur to economically and socially important species. In addition to losing an important species as its range shifts poleward, fisheries may be further affected by the opening of a gap in the ecosystem that can become occupied by a new species. This ultimately changes the structure and function of the ecosystem, potentially reducing the productivity of not only that single fishery but also the ecosystem overall.

In addition to range shifts, decreases in abundance of fish may also occur simultaneously. For example, warming has already caused decreases in populations of Norwegian Cod, leading to a less sustainable fishery. In such cases, the fishermen must either change to another fishery or risk damage to the fishery, degradation of the ecosystem and going out of business.

Together, the combination of range shifts and declining abundance has the potential to be devastating to fisheries if vulnerable fish stocks are fished at the same intensity.  Particularly sensitive fish stocks could easily collapse under these combined pressures. Considering that over 80% of the world’s fisheries are either already fully fished or over-exploited, collapses will become more likely under future conditions. However, armed with more accurate knowledge of how fished populations will be impacted, fishing regulations could be fine-tuned to protect the viability of fished species and avoid such a bleak future.

Predicting future stocks
Knowing that these issues exist, a lot of research is currently being done to predict the trajectory of future fish stocks and assist in managing fisheries in a more sustainable way. Because we are trying to predict what will happen in the future, one of the common techniques is to use computer-generated models which use complex calculations based on as many environmental and biological variables as possible to predict the effects of climate change on fish populations. These models take into account the physiological effects of climate change (mentioned above) on the targeted species to predict parameters such as growth, survival, and reproductive output to determine the future supply of adults. Then, in combination with experiments to test the outputs of these models, managers and policy makers decide how many and what type of fish can be caught annually to avoid depleting populations but also to maximize profits and food security. Importantly, these models can, if used properly, help managers prepare for the future of fisheries and to hopefully avoid more fisheries collapsing. However, it is extremely important to remember that predictions are not certainties and models, while very powerful tools, are far from perfect. There will always be variability across regions and habitats due to the interaction of many different factors and projections might represent some outcomes but not all.

It is important to remember that we can formulate all the regulations that want, but unless we are also simultaneously making an effort to decrease or mitigate the impacts of a changing climate on the ocean and its ecosystems, fisheries will continue to decline. The ocean is an important source of food for humans. In many countries seafood is a way of life. Many smaller communities rely exclusively on fish and other marine organisms for protein.  Therefore, it is important for everyone to understand how climate change will impact on the ability of marine organisms to survive because our fate is inextricably intertwined with that of the marine environment.

Advertisements

When global warming and shifting-baselines syndrome collide

We are having a strange summer in South Australia. First it was mild, then it was late, now it’s hot. So, the weather is a hot topic (pardon the pun) in every conversation. Invariably, conversation then leads onto climate and global warming. And that’s where things get interesting because, as I’ve discussed before, humans and all other organisms experience weather, not climate. In one such conversation with a friend I brought up an excellent article published recently in The Conversation. The article outlines a scary truth; by the end of February 2015 the global temperature has been above the long-term average for 30 years (see the second figure from NOAA, below). My friend said to me, in a very tongue-in-cheek way, “well, I’m 30-ish, which means that they ARE average temperatures to me!”

And that is part of the problem with climate change. It is now easy to demonstrate that temperatures are warming. In Australia, we’re starting to get used to hot summers and bush fires. Even amongst normal inter-annual variation, it’s certainly not difficult to see where the temperature trend is going from the temperature records:

This pattern is repeated globally:

But why can’t we seem to accept the data to all agree that the earth is warming and that we’re the cause?

The problem is three-fold. First, there is the shifting-baselines syndrome. Basically, the idea behind this syndrome is that what you experience in your lifetime is “normal” to you. As with my friend, if you’re only 30 years old (or younger!) then these current temperatures are “normal”. But that doesn’t mean that they ARE normal; the data clearly show that we’re warming outside pre-industrial climatic patterns.

Second, and related to the first, is that we only experience weather. If it rains, we get wet. If it’s winter, we put on a jacket. If it’s summer, we go swimming. We don’t experience “averages.” Some colleagues and I recently published a paper explaining the different effects of climate and weather, noting that without understanding these differences we will not be able to predict what will happen to our marine ecosystems. Yet, policy-makers generally conflate climate with weather, and so we continue to hold to bad policy.

The third, and possibly worst reason, is that in an attempt to “sell the story” the global media still pretends to provide a balanced report. What this means for them is that one person who speaks out against the science underpinning our understanding of climate change gets equal voice to the thousands of scientists who recognise the rigor of this science. That is not only unbalanced, but simply confuses the public into thinking that there is some debate. There is not. To paraphrase the start of the Conversation article, let’s call it, the climate has changed and we’re the cause.

Mediation of global change by local biotic and abiotic interactions

Dr Laura FalkenbergThis post is basically a short synopsis of the work done by one of my (now ex-) Ph.D. students, Dr Laura Falkenberg. Laura’s work has turned much of what we thought we knew about the effect of increased CO2 and nutrients on its head; we found synergies where we didn’t expect them (reviewed in a book chapter) and system resilience and resistance to change beyond what we hoped (via strong competitive interaction and trophic links; published in Oecologia, PLoS One and Marine Ecology Progress Series). Laura has certainly helped us look at things in new ways and given us hope that in marine systems where synergies between stressors exist that management of local conditions could potentially buy us some time in mitigating climate change (e.g. reducing nutrient flows into the marine environment, in Journal of Applied Ecology).

Ph.D. thesis: Mediation of global change by local biotic and abiotic interactions
by Dr Laura Falkenberg.

Throughout my Ph.D., I assessed the conceptual model that while cross-scale abiotic stressors can combine to synergistically favour shifts in marine habitats from kelp forests to mats of turfing algae, management of local conditions can counter this change. My experimental manipulations found broad support for the hypotheses that; 1) cross-scale factors (i.e. local and global) can have interactive effects which increase the probability of expansion of turfs but not kelp and, 2) management of local conditions (e.g. maintaining intact forests, limiting nutrient enrichment) can dampen the effects of global change (e.g. forecasted carbon dioxide). I published the results from my thesis in four papers. In the first, I showed that experimental enrichment of CO2 and nutrients influence the biomass accumulation of turf and kelp differently, with turf responding positively to enrichment of both resources while kelp responded to enrichment of nutrients but not CO2. Given that such direct responses could be mediated by interactions with other taxa, in the second paper I considered a key competitive interaction and revealed that the presence of kelp can inhibit the synergistic positive effect of resource enrichment (i.e. CO2 and nutrients) on their turf competitors. Similarly, in the third paper I highlighted the importance of herbivory by showing that under enriched CO2 conditions rates of this process were increased to counter the expansion of turfs. Finally, in the fourth paper, I considered a scenario in which these biotic controls were absent and identified that where multiple resources had been enriched and prompted a synergistic response (i.e. the expansion of turf where CO2 and nutrients are modified), subsequent reduction of the locally-determined factor alone (i.e. nutrients) substantially slowed further expansion of turf algae, but that the legacy of nutrient enrichment was not entirely eradicated. Together, these results represent progress in ecological tests of hypotheses regarding global climate change as they incorporate comprehensive sets of abiotic and biotic community drivers.

You can access all of Laura’s publications from the University of Adelaide’s digital library, or email her for a copy.

Coral reef structures resistant to Ocean Acidification

Coral reefs are structurally complex and "cemented" together by Crustose Coralline Algae.

Coral reefs are structurally complex and “cemented” together by Crustose Coralline Algae.

Unlike some of the media coverage, I’m not saying that coral reefs will be resistant to ocean acidification, and I’m certainly not saying that corals will be. There is some good news for the gloom of ocean acidification. Yet, the devil is in the detail!

Unknown to most people, Crustose Coralline Algae (known in the field as CCA to stop us tripping over the long name) are the pink algae which cement together the matrix of coral reefs the world over, effectively solidifying the structure that we know as “coral” reefs. These CCAs also form a dense, concrete like ridge on the exposed side of most reefs, protecting the more fragile corals from destructive wave energy. So, from a reef perspective they are very important.

Until now, most of the research into the future of CCAs under ocean acidification has demonstrated that they are likely to dissolve (e.g. Tropical species and temperate species). However, some colleagues and I have recently discovered two important things about these CCAs, (1) that they contain dolomite, a rather robust mineral that most people associate with mountains in Italy; and (2) that dolomite is quite resistant to pH which we are expecting in the world’s oceans in the next 100 years (link to the paper here).

What does this mean? Unfortunately it doesn’t mean that the world’s coral reefs are going to be saved from ocean acidification by dolomite-rich CCA. By all accounts the corals are still in trouble (though I still have my hopes for more adaptive capacity than we give them credit for!). However, there is some hope, because these CCA are likely to maintain their structure and thus continue to protect reefs from damage by waves.

A systems perspective of the future

Image

Experiments show that some clownfish may not be able to smell their predators in the future

To understand how complex ecosystems function, and how things will change if we push them too hard (and we’re constantly pushing!), we humans need to break them down into simple parts. I’m not going to tell you that we shouldn’t do this, because we need to start somewhere, and I’ve certainly done it myself. Where we go wrong, however, is by not putting the parts back together again to try and understand how the entire system may work, ultimately giving us a very simple view of how the world works. But, every now and then we are reminded in stunning detail how failing to build up again will provide us with the wrong information.

My research group recently had one of these stunning moments when we were visited by Prof. Phil Munday from James Cook University. His research is primarily concerned with how ocean acidification will impact on fish and their various roles in the functioning of ecosystems. Basically, he shattered our thoughts about ocean acidification by teaching us that 1 + 1 does not equal 2!

In an elegant series of experiments, Phil’s research group has shown that if you look at the separate responses of predatory fish and their prey to ocean acidification you may not accurately predict the outcomes. For example, under near-future ocean acidification, clownfish (Amphiprion percula) are unable to recognise the smell of their predators. Even worse, some species of fish became almost suicidal, being attracted to the smell of their predator!

If you were to take this on face value you would think that these results mean that small fish are going to have increased mortality under future ocean conditions. However, Phil has shown that it’s not that straight forward because when predatory fish are also exposed to ocean acidification their prey preference can change; preferred prey under current conditions are the less preferred prey under future conditions.

What does this tell us? Apart from the fact that some fish are going to get lucky, I think the big point here is that we cannot simply add up the results of a number of simple experiments looking at individual system components and identify what will happen to systems overall. Just like unexpected synergies among different stressors, we can’t assume that adding up the components will be enough. It’s time to take a more system-oriented approach where we can!